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A RAMSEY THEOREM FOR TREES, WITH AN 
APPLICATION TO B A N A C H  SPACES 

BY 

JACQUES STERN 

ABSTRACT 

Let S be the binary tree of all sequences of O's and l's. A chain of S is any 
infinite linearly ordered subset. Let ~f be an analytic set of chains, we show that 
there exists a binary subtree S' of S such that either all chains of S'  lie in ~f or 
no chain of S' lies in ~. As an application, we prove the following result on 

Banach spaces: If (x , )~s  is a bounded sequence of elements in a Banach space 
E, there exists a subtree S'  of S such that for any chain /3 of S' the sequence 

( x ~ ) ~  is either a weak Cauchy sequence or equivalent to the usual 1 ~ basis. 

§0. Introduction 

Throughout  the paper S stands for the set of finite sequences of O's and l's, 

ordered by the relation "s  is an initial segment of s" '  (denoted by s =< s'). By a 

tree we mean any partial ordering isomorphic to (S, -< ). Thus a subtree of S is 

essentially any subset S'  of S which has a single minimal element and is such that 

any element has exactly two immediate successors. A chain is an infinite linearly 

ordered subset of a tree. If T is a tree, the set of its chains will be denoted 

by ~g ( r ) .  

The present paper was motivated by the following problem raised by Brunel 

and Sucheston ([1]): Given a real Banach space E and a bounded sequence of 

elements of E indexed by S, say (xs)~s, is it possible to find a subtree S' C S such 

that for any chain /3 of S': 

(i) either the sequence (x,)5~ is a weak-Cauchy sequence, 

(ii) or it is equivalent to the usual /l-basis? 

For the reader 's convenience we recall the definitions of the notions involved: 

0.1. DEFINITION. Let E be a Banach space and let (x.).~N be a sequence of 

elements in E. 
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(i) (x.) is a weak-Cauchy sequence if lim,_=f(xn) exists for any element f in 

the dual space of E. 

(ii) (x.) is equivalent to the usual ll-basis if there is a ~ > 0  such that for any 

integer n and any choice of scalars ,~1,'" ", An, the following holds: 

The answer to the above problem is positive. 

Once we had proved it, we realized that it could be viewed as a consequence of 

the following Ramsey-type result. 

0.2. THEOREM. Let T be a tree and let gC be an analytic set of chains ; there 

exists a subtree T' of T such that 

(i) either ~ ( T ' ) C  ~, 

(ii) or ~ ( r ' ) n ~  = 0 .  

This theorem is a generalization of a theorem of Silver ([4]). 

We now briefly describe the organization of the paper. §1 is devoted to the 

proof of Theorem 0.2 and, more generally, to the study of the following Ramsey 

property: if T is a tree, a set of chains ~ is said to be Ramsey if there exists a 

subtree T'_C T such that either ~ ( T ' )  _C ~for ~(T ' )  N ~ = 0 .  The proofs in this 

section use metamathematical techniques and we don't  know how to avoid them. 

In §2, we apply Theorem 0.2 to Banach space theory. Let (xs)s~s be a 

sequence of elements in a given Banach space and let ~f be the set of chains/3 of 

S such that: 

(i) either the sequence (x,)~0 is a weak-Cauchy sequence, 

(ii) or else it is equivalent to the usual l l-basis. 

A key step towards the solution of Brunel and Sucheston's problem is the 

following: 

0.3. PROPOSITION. ~ is coanalytic. 

(By coanalytic we mean the complement of an analytic set.) 

We now recall a theorem of Rosenthal ([3]). 

0.4. THEOREM (Rosenthal). Let (x, ),~N be a bounded sequence in a Banach 

space. Then (x.)  has a subsequence (x'.) satisfying one of the two following 

alternatives : 

(i) (x',) is a weak-Cauchy sequence, 

(ii) (x ' )  is equivalent to the usual ll-basis. 
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The positive answer to the problem of Brunel and Sucheston is an easy 

consequence of Theorem 0.2, Theorem 0.4 and Proposition 0.3. 

It should be emphasized that the present paper provides a new example where 

metamathematical ideas and techniques are used in order to solve a problem 

coming from a branch of "classical mathematics". Brunel and Sucheston needed 

the answer to their problem to achieve a probabilistic characterization of Banach 

spaces with separable dual ([1]). It is the author's conviction and hope that these 

examples will be more and more numerous. 

§1. The Ramsey property for trees 

In this section we use freely the definitions, notations and conventions of 

modern set theory, especially those which appear in Silver's paper ([4]) and we 

assume familiarity with this paper. For example, if X is a countable infinite set, 

IX] ~ denotes the set of all infinite subsets of X. Also, all topological notions 

concerning the space P(X)  are obtained by identifying P(X)  with 2 x and using 

the product of the discrete topology. [X] ° is considered as a topological 

subspace. 

The Ramsey property for trees has been defined in §0. We recall this definition 

as well as the definition of the usual Ramsey property. 

1.1. DEFINITION. (i) L e t X b e a s e t , ~ a s u b s e t o f [ X ] ~ ; ~ i s R a m s e y  i f there  

is some infinite subset Y C_ X such that either [Y]° C_ ~ or [Y]~ n ~ = •. 

(ii) Let T be a tree, ~ a set of chains; ~ is Ramsey if there is a subtree T '  C T 

such that either ~(T')_C ~ or C¢(T')N ~ = Q .  (Recall that ~ ( T ' ) i s  the set of 

chains of T'.) 

The following lemma is the main tool which we will use to get results on the 

Ramsey property for trees. 

1.2. LEMMA. Let T be a tree, ~ a subset of ~ ( T ) ;  assume there exists a 

non-empty perfect closed set P C ~g(T) such that: 

(i) for any ~ E P[~]~ C ~, 

(ii) for any pair of distinct elements of P, say ~, ~', their union ~ U ~' is not a 

chain, 

then there exists a subtree T' of T with 

c~(r ' ) c  ~. 

PROOF. Without loss of generality, we assume T = S. Then, we define by a 

simultaneous induction on the length of the sequence s, two maps t, so: 
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t : S ~ S ,  

~ : s - - , ~ ( s )  
with the following properties: 

(i) t is increasing, 

(ii) t(~'O) and t(s"l) are incomparable, 

(iii) t(s) E ~(s) ~ P, 
(iv) If s -~ s' then (u ~ t(s) :  u ~ ~(s)}-- {u _-< t(s):  u E ~(s')}. 

In order to perform the construction, it is enough to show how t(~O), t(s'-'l), 

,~(s'~O), ,~(s'~l) are defined from t(s), ~(s). Let X~ be 

{~, :{u _-< t ( s ) :  u ~ ~ ( s ) } - -  {u _-< t ( s ) :  u ~ v}}.  

Xs is open (and closed) and P ¢q Xs is not empty because it contains ~(s); 

therefore, as P is a perfect set, one can choose two distinct elements in P fq X~, 

these two elements will be ~(~'0), sC(~l). Now, by the hypothesis, sc(~'0) U ~(s'-'l) 

is not a chain; it follows that one can pick t(~0), t(s'-'l) such that 

t(~'O) E ~: (s'O), 

t(s~l) c ~(s'-'l), 
t(~0) and t (~ l )  are incomparable, 

t (~"0) = > t(s), 
t(~l)>=t(s). 

Let S' be the image of t. Clearly S' is a subtree of S. Now let/3 be a chain of 

S';  there exists a chain ",/ of S such that /3 = t(y).  The set {~(s): s C y} is a 

countable set of elements of P with a limit ~'. Clearly ~ ' E P  and /3 C_ (. 

Therefore, as [,~]~ _C ~, we get /3 ~ ~. 

REMARK. Apparently, the axiom of choice has been used in the above proof. 

Actually it can be eliminated. For example, ~:(~0) and ,~(~'1) can be chosen to be 

the minimal and maximal elements of X, M P (with respect to the usual ordering 

of P considered as homeomorphic to the Cantor space). 

We now prove the following result: 

1.3. THEOREM. Let ~ be a ~11 set of chains of S; then ~ is Ramsey. 

This is a generalization of Silver's theorem (Any ~'~ subset of [~o] ~ is 

Ramsey [4]). 

PROOf. First of all, we choose some canonical decomposition of ~ into N, 

Borel sets; for example, if ~ is 
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{13 : 3,~6(o,, 13, ,s)} 

where ~ is an arithmetical formula and 8 a fixed element of ~co, we let for 0 < 1,1, 

x~ ={13 : L0113, ~,]~ ~ , / , ( ~ ,  13, a)}. 

Obviously 

sgf = U x,,. 
O<~N 1 

We now fix a countable transitive model ,5" of ZFN such that ~ is an element of 

X (where ZFN is a large enough fragment of ZF to make our proof work). Let g 

be a Cohen-generic real over 2¢'. We now work within the model X[g ]  (this is a 

model of ZFw, where N '  can be made as large as we like by suitable choices of 

N). In this model, we apply Silver's theorem: let o-(g) be the set of finite initial 

sequences of g; o '(g) is a maximal chain in S and there exists an infinite 

3' _C o'(g) such that one of the following two alternatives holds: 

(i) [ r ]  ° n , ~  = 0 ,  

(ii) [ r ]  ~ _c ~. 

Actually, it is a corollary of the proof given by Silver ([4]) that (ii) is equivalent to 

the (apparently) stronger statement 

(ii') 30  < ~, [y]~ _C Xo. 

We now pick a forcing condition p and a term r of the forcing language such that 

(in X)  one of the following holds (where F is a denotation for the generic real): 

(*) p Ik r is an infinite subset of or(F) and [r]  ~' N ~ = 0 ,  

(**) for some ordinal 0 < 1,I,, 

p Ik r is an infinite subset of o-(F) and [r] ~ C Xa. 

Let P be a perfect compact set of Cohen-generic reals over 2¢" extending the 

condition p. Let g be any element of P ;  if r(g) is the interpretation of the term r 

in X[g] ,  then, clearly, r(g) is an infinite subset of o-(g). We let II be the image of 

P under the continuous mapping r : g --~ r(g) .  11 is a compact set and given any 

pair of distinct elements of 11 say r (g) ,  r(g'), r(g) U r(g ' )  is not a chain because 

r(g) (resp. r(g')) is included in a unique maximal chain o-(g) (resp. o'(g')). This 

argument also shows that r is one-one and this implies that H is a perfect set. So, 

in view of Lemma 1.2, it is enough to see that one of the following two 

statements holds: 

(i) for any ~ i n H  [ ~ ' ] ~ ' N ~ = O ,  

(ii) for any ~', in I1 [sr] 0' _C Xo. 
We now distinguish two cases: 
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Case 1. (*) holds. Then, if ~" = r (g )  is in H, [~']~ fq ~ = Q is a HI statement 

which holds in N(g) .  By Mostowski's absoluteness result, it remains true in the 

actual universe. 

Case 2. (**) holds. Similarly, if ~ = ~-(g) is in II, [~]~ C_ X0 can be coded as 

a II'~ statement (about ~, ~ and any relation R0 on co having order type 0). As it 

holds in N[g] ,  it remains true in the real world. 

As usual, if one is ready to work in a stronger set theory than ZF, one can 

extend Theorem 1.3 to the X; (P.C.A) sets. 

1.4. THEOREM. Assume Vo~N~t"J<I,I~; then any ~ set of chains in S is 

Ramsey. 

This theorem shows, inter alia, that the existence of measurable cardinals 

implies that X~ sets of chains are Ramsey. It extends an analog result of Silver for 

X~ subsets of [co]~. 

PROOF OF THE THEOREM. We first choose some canonical decomposition of 

~f into N, HI sets. 

For example, if ~ is 

{~ : 3~,~ (a, t3, a)} 

where q~ is a II] formula and ~ a fixed element of oco, we let for 0 < ~tl 

xo = {~ : 3 5  ~ to [~ ,  a ] ~  (~,/3, a)}. 

Clearly ~ = I..Jo<., Xo. 

Then, we consider a Cohen generic extension L [~5] [g ] of the model L [8 ]. The 

following lemma can be extracted from the proof of Theorem 2 in Silver's 

paper [4]: 

1.5. LEMMA. In L[8]  [g] one can find a notion of forcing P with cardinality 

<= 1~12 such that in the corresponding generic extension d,t the cardinals are preserved 

and there is an infinite subset Y of g such that one of the following holds : 

(i) [r]~ n a° = 0 ,  

(ii) 30 < I~, [y]~ c_ Xo. 

We now consider M as a generic extension of L[8]  via a notion of forcing P'. 

From the lemma we can see that there exists a forcing condition p E P' and two 

terms rl, r2 of the forcing language such that p IF r, is infinite &r2 C zl & rl is a 

maximal branch & z, E L[~]  and 

(*) either p I~- [r2] ~ ¢q ~f = 0 ,  
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(**) or for some 0 < l~f t~l p Ik [r2] ~ C_ Xo. 

Following section III 1.10 of Solovay's paper [5], we consider a map 7r : S ~ P' 

which has the following properties: 

(i) zr is increasing, 

(ii) 7r(Q) = p, 

(iii) given any maximal branch /3 of S, there is a unique P'-generic set G~ 

containing {Tr(s) : s E/3}, 

(iv) furthermore, /3~/3'  implies that G~ x G~, is P '×  P'-generic over L[8]. 

The map h :/3--~ r2(G~) is continuous. Also, it is one-one. To see this let 

/3 ~/3'; "r2(G~) = r2(G~,) would imply rl(G~) = ~-~(G~,) (because z~(G~) and 

rm(G~,) are maximal branches). Now, because G~ × G~, is P' x P'-generic over 

L ITS], this implies "r~(G~) E L[8];  contradiction. As the domain of A is a compact 

perfect set, h is an homeomorphism, therefore its image is also a perfect set. 

Also, the argument used to show that h is one-one actually shows t h a t / 3 ~ / 3 '  

implies h (/3) U h (/3') is not a chain. Therefore, in order to apply Lemma 1.2, it is 

enough to see that one of the following statements holds: 

(i) for any /3 [h(/3)] °' f3 ~ =Q,  

(ii) for any /3 [A(/3)]~C_Xo. 

We distinguish two cases. 

Case 1. (*) holds; then the statement [h(/3)] ~ n ~ = ~ is a H~ statement 

which is known to hold in L [8 ] [G~ ]; by Shoenfield absoluteness lemma it holds 

in the actual universe. 

Case 2. (**) holds; a similar argument works. 

Before we close §1, let us mention the following result which shows the 

consistency of the theory ZF + DC + Any set of chains is Ramsey (provided ZF 

+ there exists an inaccessible cardinal is consistent). 

1.6. THEOREM. In Solovay's model (see [5]), any set of chains is Ramsey. 

The proof is very similar to the proof of Theorem 1.5, using the fact that all 

subsets of [to] ~ are Ramsey in Solovay's model; this fact is due to Mathias ([2]). 

§2. An extension of a theorem of Rosenthal 

The following result is an extension of Rosenthal's theorem (quoted in the 

introduction as Theorem 0.4). 

2.1. THEOREM. Let E be a real Banach space and let (x,),~s be a bounded 

sequence of elements of E;  there exists a subtree S'C_ S such that one of the 

following holds : 
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(i) For any chain ~ of S'  ( x , ) ,~  is a weak-Cauchy sequence. 

(ii) For any chain fl of S '  (x~)s~ is equivalent to the usual ll-basis. 

In order to prove Theorem 2.1 we need the following. 

2.2. PROPOSITION. Let (x~ )~Es be a sequence of elements in a Banach space E ; 

then 

(i) {/3 :/3 is a chain and (xs)s~, is a weak Cauchy sequence} is coanalytic, 

(ii) {/3 :/3 is a chain and (x~)s~ is equivalent to the usual l ~ basis} is the 

intersection of a G~ with an F,~. 

The proof of Proposition 2.2 will be given in detail, in order to be accessible to 

the reader who is not a specialist in descriptive set theory. 

Recall that P(S)  is endowed with a topology whose basic open sets are the sets 

U(SI,'" ",Sn ;Stl,"" °,Sk)= {Or :Sl~Ol, ' ' ' ,Sn ~ OL, S'I~ a , ' "  ", Sk~ a } 

when ( s , , . . . , s , ) ,  (s'~,..., s~) vary over the finite sequences of elements of S. 

We now consider the space X = P ( S ) x  R s, where R s is endowed with the 

product of the usual topology. 

We assume (xs),~s is a fixed sequence. 

2.3. LEMMA. Let XI be the set of pairs (a, f )  in X such that there exists a linear 

functional f of norm <_- 1 with f(x~) = f ( s )  for any s; X~ is a closed set. 

PROOF. A linear functional f of norm =< 1 with f (x , )  = f ( s )  for any s E S 

exists if and only if the following inequalities hold: 

I +... + +... + I1 

for any sequence of scalars (a~,- . . ,  ak) and any sequence of elements of S 

(s~,-.-, s~). Each inequality defines a closed set. X~, the intersection of all these 

closed sets, is closed. 

2.4. LEMMA. Let X2 be the set of pairs (a , f )  in X such that the sequence 

( f ( s ) ) , ~  is not Cauchy; X2 is G~. 

PROOF. X2 has the following definition (a, f)  E X2iff 3q E Q q > 0 and Vtr (tr 

is a finite set of elements of S ~ 3s 3s '  (s ~ a and s ' E  a and l f ( s ) - f ( s ' ) l > q  

and s~o"  and s ' ~  a)). 

Notice that for fixed q and o- 

A q . ~ = { ( a , f ) : 3 s  3 s ' ( s C a  and s ' E a  and I f ( s ) - f ( s ' ) l >  q 

and s ~  tr and s ' ~  tr)} 



Vol. 29, 1978 RAMSEY T H E O R E M  187 

is an open set in X. Now 

x ~ = u  NA.~. 
qEO o~_CS 
q > 0  o" finite 

2.5. LEMMA. The set of all chains o[ S is a G~. 

PROOF. It is enough to write down the following definition of the set of all 

chains ~(S) :  

/3 E ~ (S) if[ ¥s  Vs' (s E [3 and s' E/3 ~ s and s' are comparable) 

and V s E / 3 3 s ' E / 3 ( s ' ~ s  and s'>-_s). 

We are now able to give the proof of Proposition 2.2(i). As ~ ( S )  is a G~ it is 

enough to show that 

Y = {/3 : (x,),~o is not a weak Cauchy sequence} 

is analytic. But a given/3 is in Y if and only if there exists a linear functional f of 

norm _-< 1 such that f ( x , ) , ~  is not Cauchy. This means exactly that/3 belongs to 

the projection on P(S )  of the Borel set X1 n x2. 

To prove Proposition 2.2(ii) we consider for t5 > 0 the set Zn of/3 which satisfy 

the inequalities 

I Ofi ~ O~i Xsl  
. =  i = 1  i 1 

for all sequences of scalars oq, • • -, o~, and all sequences of elements s~, • •., s, in 

/3; this set Z~ is closed. Now 

{/3 :/3 is a chain and (xs) ,~ is equivalent to the usual l '  basis} 

is the intersection of the G~ set ~ (S) with the F,, set U ,>0 q ~ o Z q  • 

We now complete the proof of Theorem 2.1. 

By applying twice Theorem 1.3, one can find a subtree S'  C S such that one of 

the following three possibilities holds: 

(i) for any chain /3 of S' ( x , ) ,~  is a weak-Cauchy sequence, 

(ii) for any chain /3 of S'  (x~),~ is equivalent to the usual 11 basis, 

(iii) for any chain/3 of S'  (x , )s~ is not a weak-Cauchy sequence; neither is it 

equivalent to the usual l ~ basis. 

Thus, what we need is to exclude the third possibility. Assume it happens and 

apply Rosenthal 's theorem (0.4) to any chain /3 of S': there exists an infinite 

/3'C/3 such that 
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either (x~),~, is a weak Cauchy sequence 

or else it is equivalent to the usual /'-basis. 

But /3' is a chain of S'; contradiction. 
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