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A RAMSEY THEOREM FOR TREES, WITH AN
APPLICATION TO BANACH SPACES

BY
JACQUES STERN

ABSTRACT

Let S be the binary tree of all sequences of 0’s and 1's. A chain of § is any
infinite linearly ordered subset. Let & be an analytic set of chains, we show that
there exists a binary subtree §' of § such that either all chains of S’ lie in & or
no chain of S’ lies in Z. As an application, we prove the following result on
Banach spaces: If (x,),<s is a bounded sequence of elements in a Banach space
E, there exists a subtree S’ of § such that for any chain 8 of §' the sequence
(X, ).cp is either a weak Cauchy sequence or equivalent to the usual ' basis.

§0. Introduction

Throughout the paper S stands for the set of finite sequences of 0’s and 1’s,
ordered by the relation ““s is an initial segment of s”” (denoted by s =s’). By a
tree we mean any partial ordering isomorphic to (S, =). Thus a subtree of S is
essentially any subset S’ of § which has a single minimal element and is such that
any element has exactly two immediate successors. A chain is an infinite linearly
ordered subset of a tree. If T is a tree, the set of its chains will be denoted
by €(T).

The present paper was motivated by the following problem raised by Brunel
and Sucheston ([1]): Given a real Banach space E and a bounded sequence of
elements of E indexed by S, say (x,),es, is it possible to find a subtree S’ C S such
that for any chain 8 of S”":

(i) either the sequence (x,).,cp is a weak-Cauchy sequence,

(i) or it is equivalent to the usual ['-basis?

For the reader’s convenience we recall the definitions of the notions involved:

0.1. DeriniTiON.  Let E be a Banach space and let (x. ).~ be a sequence of
elements in E.
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(i) (x.)is a weak-Cauchy sequence if lim,_...f(x.) exists for any element f in
the dual space of E. ’

(i1) (x.) is equivalent to the usual I'-basis if there is a 8 > 0 such that for any
integer n and any choice of scalars Ay, - -, A,, the following holds:

i A
i=1

The answer to the above problem is positive.

azmg

Once we had proved it, we realized that it could be viewed as a consequence of
the following Ramsey-type result.

0.2. THEOREM. Let T be a tree and let Z be an analytic set of chains; there
exists a subtree T' of T such that

(i) either €(T")C Z,

(i) or 6(THYNZ =.

This theorem is a generalization of a theorem of Silver ([4]).

We now briefly describe the organization of the paper. §1 is devoted to the
proof of Theorem 0.2 and, more generally, to the study of the following Ramsey
property: if T is a tree, a set of chains & is said to be Ramsey if there exists a
subtree T’ C T such that either €(T")C X or €(T')N X = . The proofs in this
section use metamathematical techniques and we don’t know how to avoid them.

In §2, we apply Theorem 0.2 to Banach space theory. Let (x,),cs be a
sequence of elements in a given Banach space and let Z be the set of chains 8 of
S such that:

(i) either the sequence (x,);ep is a weak-Cauchy sequence,

(ii) or else it is equivalent to the usual /'-basis.

A key step towards the solution of Brunel and Sucheston’s problem is the
following:

0.3. ProrosiTioN. & is coanalytic.
(By coanalytic we mean the complement of an analytic set.)

We now recall a theorem of Rosenthal ([3]).

0.4. Treorem (Rosenthal). Let (x,).en be a bounded sequence in a Banach
space. Then (x.) has a subsequence (x,) satisfying one of the two following
alternatives:

(i) (x.) is a weak-Cauchy sequence,

(i) (x.) is equivalent to the usual I'-basis.
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The positive answer to the problem of Brunel and Sucheston is an easy
consequence of Theorem 0.2, Theorem 0.4 and Proposition 0.3.

It should be emphasized that the present paper provides a new example where
metamathematical ideas and techniques are used in order to solve a problem
coming from a branch of “‘classical mathematics”. Brunel and Sucheston needed
the answer to their problem to achieve a probabilistic characterization of Banach
spaces with separable dual ([1]). It is the author’s conviction and hope that these
examples will be more and more numerous.

§1. The Ramsey property for trees

In this section we use freely the definitions, notations and conventions of
modern set theory, especially those which appear in Silver’s paper ([4]) and we
assume familiarity with this paper. For example, if X is a countable infinite set,
[X1]” denotes the set of all infinite subsets of X. Also, all topological notions
concerning the space P(X) are obtained by identifying P(X) with 2* and using
the product of the discrete topology. [X]” is considered as a topological
subspace.

The Ramsey property for trees has been defined in §0. We recall this definition
as well as the definition of the usual Ramsey property.

1.1. DeriniTioN. (i) Let X be a set, & asubset of [X]“; & is Ramsey if there
is some infinite subset Y C X such that either [Y]"C & or [Y]"N& = .

(ii) Let T be atree,  a set of chains; & is Ramsey if thereisasubtree T'C T
such that either €(T")C Z or €(T)YNZX = . (Recall that €(T') is the set of
chains of T'.)

The following lemma is the main tool which we will use to get results on the
Ramsey property for trees.

1.2. LeEmmA. Let T be a tree, ¥ a subset of €(T); assume there exists a
non-empty perfect closed set P C €(T) such that:

G) for any LEPUI C 2,

(i) for any pair of distinct elements of P, say ¢, {', their union { U {' is not a
chain,
then there exists a subtree T' of T with

(T)C 2.

Proor. Without loss of generality, we assume T = S. Then, we define by a
simultaneous induction on the length of the sequence s, two maps ¢, £:
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t:S—-S5,

£:S->%4(S)

with the following properties:

(i) t is increasing,

(i) #(s0) and 1(s"1) are incomparable,

(i) 1(s)EE(s)EP,

(iv)y fs=ss then{u=st(s):u€é(s)={u=st(s):uc€é(s.

In order to perform the construction, it is enough to show how #(5°0), t(s'1),
£(50), £(s1) are defined from t(s), £(s). Let X, be

y{ust():ueé@G)={u=sts):ucy}.

X, is open (and closed) and P N X, is not empty because it contains &(s);
therefore, as P is a perfect set, one can choose two distinct elements in P N X,
these two elements will be £(5°0), £(s 1). Now, by the hypothesis, £(50) U £(s'1)
is not a chain; it follows that one can pick ¢(5°0), (5 1) such that

t(50) € £(S0),

t(S1)E E(s ),

t(50) and t(s'1) are incomparable,
t(50)= t(s),

t(S1) = 1(s).

Let S’ be the image of t. Clearly S’ is a subtree of S. Now let 8 be a chain of
S’; there exists a chain y of § such that 8 = t(y). The set {£(s):s€ vy} is a
countable set of elements of P with a limit { Clearly {€P and B C{.
Therefore, as [{]* C %, we get B E Z.

REMARK. Apparently, the axiom of choice has been used in the above proof.
Actually it can be eliminated. For ¢example, £(5°0) and £(5 1) can be chosen to be
the minimal and maximal elements of X; N P (with respect to the usual ordering
of P considered as homeomorphic to the Cantor space).

We now prove the following result:
1.3. THEOREM. Let ¥ be a %, set of chains of S; then ¥ is Ramsey.

This is a generalization of Silver’s theorem (Any X; subset of [w]” is
Ramsey {4]).

Proor. First of all, we choose some canonical decomposition of & into N,
Borel sets; for example, if & is
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{B:3ay(a,B,8)}

where ¢ is an arithmetical formula and 8 a fixed element of “w, we let for 8 <N,

Xo = {B . LB[B’ 7] F aad’(a’ B, 8)}
Obviously
= U X,.

0<INy

We now fix a countable transitive model & of ZFy such that 8 is an element of
N (where ZFy is a large enough fragment of ZF to make our proof work). Let g
be a Cohen-generic real over #. We now work within the model ¥ [g] (this is a
model of ZFy., where N’ can be made as large as we like by suitable choices of
N). In this model, we apply Silver’s theorem: let o(g) be the set of finite initial
sequences of g; o(g) is a maximal chain in S and there exists an infinite
v C a(g) such that one of the following two alternatives holds:

W yI"nZ =0,

@ rIca
Actually, it is a corollary of the proof given by Silver ([4]) that (ii) is equivalent to
the (apparently) stronger statement

(') 30 <N, [y]" C X..
We now pick a forcing condition p and a term 7 of the forcing language such that
(in /) one of the following holds (where I' is a denotation for the generic real):

(*) pl 7 is an infinite subset of o(I') and [7]* N X =T,

(**) for some ordinal 8 <N,

p F 7 is an infinite subset of ¢ (I"y and [7]* C X;.

Let P be a perfect compact set of Cohen-generic reals over & extending the
condition p. Let g be any element of P; if 7(g) is the interpretation of the term 7
in N¥[g], then, clearly, 7(g) is an infinite subset of o(g). We let I be the image of
P under the continuous mapping 7 : g — 7(g). Il is a compact set and given any
pair of distinct elements of Il say 7(g), 7(g"), 7(g) U 7(g’) is not a chain because
7(g) (resp. 7(g")) is included in a unique maximal chain o(g) (resp. o(g’)). This
argument also shows that 7 is one-one and this implies that I1 is a perfect set. So,
in view of Lemma 1.2, it is enough to see that one of the following two
statements holds:

(i) forany {inll [L)"NZ¥ =0,

(i1) for any ¢, in I [{]° C X..

We now distinguish two cases:
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Case 1. (*)holds. Then,if { =7(g)isin I, [{]* N ¥ = D is a I} statement
which holds in ¥ (g). By Mostowski’s absoluteness result, it remains true in the
actual universe.

Case 2. (*+) holds. Similarly, if { = 7(g)isin I, [{]* C X, can be coded as
a I1; statement (about ¢, 8 and any relation R, on w having order type 6). As it
holds in ¥(g], it remains true in the real world.

As usual, if one is ready to work in a stronger set theory than ZF, one can
extend Theorem 1.3 to the X; (P.C.A) sets.

1.4. THEOREM. Assume VaN{'“)<N,; then any X} set of chains in S is

Ramsey.

This theorem shows, inter alia, that the existence of measurable cardinals
implies that X; sets of chains are Ramsey. It extends an analog result of Silver for
3 subsets of [w]”.

Proor oF THE THEOREM. We first choose some canonical decomposition of
Z into N, II] sets.
For example, if & is

{8:3a¢(a,B,8)}

where ¢ is a II} formula and & a fixed element of “w, we let for 8 <N,

Xe ={B :3a € L,[B, 8] ¢ (a, B, 8)}.

Clearly Z = Uy, X
Then, we consider a Cohen generic extension L{8][g] of the model L{8]. The
following lemma can be extracted from the proof of Theorem 2 in Silver’s

paper [4]:

1.5. LemMMA. In L[8][g] one can find a notion of forcing P with cardinality
= N, such that in the corresponding generic extension M the cardinals are preserved
and there is an infinite subset y of g such that one of the following holds:

0 ' n%=2,

(i) 30 <N, [y]" C X..

We now consider # as a generic extension of L[8] via a notion of forcing P
From the lemma we can see that there exists a forcing condition p € P’ and two
terms 7, 7, of the forcing language such that p I 7, is infinite &7, C 71 & 7, is a
maximal branch & 7,  L[§] and

(¥) either pl[r)]* NZ =,
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(**) or for some 8 <N*® pF[r.]° C X..

Following section III 1.10 of Solovay’s paper [5], we consider amap 77 : S — P/
which has the following properties:

(i) r is increasing,

@) =@ =p,

(iil) given any maximal branch 8 of §, there is a unique P'-generic set G,
containing {w(s):s € B},

(iv) furthermore, B# B' implies that G; X G is P' X P'-generic over L[8].

The map A : 8 — 7(Gs) is continuous. Also, it is one-one. To see this let
B #B'; m(Ga)= 1(Gs) would imply 7:(Gg)=7.(Gs) (because 7.(Gs) and
71(Gg’) are maximal branches). Now, because Gy X Gg is P' X P'-generic over
L[8], this implies 7,(G;) € L[8]; contradiction. As the domain of A is a compact
perfect set, A is an homeomorphism, therefore its image is also a perfect set.
Also, the argument used to show that A is one-one actually shows that B # B’
implies A (B) U A(B’) is not a chain. Therefore, in order to apply Lemma 1.2, it is
enough to see that one of the following statements holds:

() forany B A NZ =02,

(i) for any B [A(B))" C X
We distinguish two cases.

Case 1. (%) holds; then the statement [A(8)]* N ¥ = is a II; statement
which is known to hold in L[8][Gs]; by Shoenfield absoluteness lemma it holds
in the actual universe.

Case 2. (*+) holds; a similar argument works.

Before we close §1, let us mention the following result which shows the
consistency of the theory ZF + DC + Any set of chains is Ramsey (provided ZF
+ there exists an inaccessible cardinal is consistent).

1.6. THEOREM. In Solovay's model (see [5]), any set of chains is Ramsey.
The proof is very similar to the proof of Theorem 1.5, using the fact that all

subsets of [w]* are Ramsey in Solovay’s model; this fact is due to Mathias ([2]).
§2. An extension of a theorem of Rosenthal

The following result is an extension of Rosenthal’s theorem (quoted in the
introduction as Theorem 0.4).

2.1. THEOREM. Let E be a real Banach space and let (x.);cs be a bounded
sequence of elements of E ; there exists a subtree S'C S such that one of the
following holds:
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(i) For any chain B of S’ (X.).cs is a weak -Cauchy sequence.
(ii) For any chain B of S’ (x,)secp is equivalent to the usual I'-basis.

In order to prove Theorem 2.1 we need the following.

2.2. PrOPOSITION.  Let (x.).es be a sequence of elements in a Banach space E ;
then

(i {B:Bis a chain and (x;);cp is a weak Cauchy sequence} is coanalytic,

(i) {B:B is a chain and (x).cp is equivalent to the usual I' basis} is the
intersection of a Gs with an F,.

The proof of Proposition 2.2 will be given in detail, in order to be accessible to
the reader who is not a specialist in descriptive set theory.
Recall that P(S) is endowed with a topology whose basic open sets are the sets

U(si, 838, s)={a:s€a," 5, Ea,s|€a, -, 5+ & a}

when (s, -, 5.), (51, -, sx) vary over the finite sequences of elements of S.
We now consider the space X = P(S)X R®, where R® is endowed with the
product of the usual topology.
We assume (x,).es is a fixed sequence.

2.3. Lemma. Let X, be the set of pairs (e, f) in X such that there exists a linear
functional f of norm =1 with f(x.)= f(s) for any s; X, is a closed set.

ProOF. A linear functional f of norm =1 with f(x,)= f(s) for any sS€S
exists if and only if the following inequalities hold:

laf(s)+ -+ af(si )| Sl aux, + - - + auxs, |

for any sequence of scalars (ai,---,a) and any sequence of elements of S
(s1,- " -, s ). Each inequality defines a closed set. X, the intersection of all these
closed sets, is closed.

2.4. Lemma. Let X, be the set of pairs (a,f) in X such that the sequence
(f(s))sca is not Cauchy; X, is Gs,.

Proor. X, has the following definition (a, f) € X,iff 3¢ €Q g >0and Vo (o
is a finite set of elements of $ = 35 s’ (sE a and s’ € & and [f(s)— f(s')] > ¢
and sZ o and s' € 0)).

Notice that for fixed g and o

Age ={(e,f):3As As' (s € and s'€ a and |f(s)—f(s")|>¢q
and sZ o and s’ & o)}
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is an open set in X. Now

X=U N Ao
i
qEQ oCS
q>0 o finite

2.5. LeMMA. The set of all chains of S is a Gs.

Proor. It is enough to write down the following definition of the set of all
chains €(S):

BEE(S) I VsVs'(s€EpB and s'€ B —s and s’ are comparable)
and VsEBIAs'€B(s'#5 and s'=s).

We are now able to give the proof of Proposition 2.2(i). As €(S)is a G; it is
enough to show that

Y ={B :(x.);es isnot a weak Cauchy sequence}

is analytic. But a given 8 isin Y if and only if there exists a linear functional f of
norm = 1 such that f(x,).cs is not Cauchy. This means exactly that 8 belongs to
the projection on P(S) of the Borel set X, N X..

To prove Proposition 2.2(ii) we consider for § > 0 the set Z; of 8 which satisfy
the inequalities

82]%]2 ”iga,-xsi

for all sequences of scalars «,, - * -, &, and all sequences of elements s;, - - -, 5, in
B; this set Z; is closed. Now

{B:B isachainand (x,).cs isequivalenttothe usual /' basis}
is the intersection of the G, set €(S) with the F, set U 12,7,

We now complete the proof of Theorem 2.1.

By applying twice Theorem 1.3, one can find a subtree $' C S such that one of
the following three possibilities holds:

(i) for any chain 8 of §' (x.).ep is a weak-Cauchy sequence,

(it) for any chain B of S’ (x,).,es is equivalent to the usual I' basis,

(iii) for any chain B of §' (x,).cp is not a weak-Cauchy sequence; neither is it
equivalent to the usual I' basis.

Thus, what we need is to exclude the third possibility. Assume it happens and
apply Rosenthal’s theorem (0.4) to any chain 8 of §': there exists an infinite
B'C B such that
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either (x,),cq is a weak Cauchy sequence
or else it is equivalent to the usual ['-basis.
But B’ is a chain of S’; contradiction.
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